

Applications of Hydraulic Modeling

Engineering and Operations Committee Item 6c June 7, 2021

Background

- Types of hydraulic modeling in use at Metropolitan
 - Water distribution
 - Water treatment
 - Overland flow
 - Computational fluid dynamics (CFD)
- What is a water distribution model?
 - A computer model that simulates the hydraulics within the distribution and conveyance system
- Unique aspect of Metropolitan's water distribution model
 - Ability to simulate free surface and pressurized flow conditions simultaneously
 - Ability to simulate various control strategies within a control facility
- Development of the water distribution model
 - Completed in 2017
 - Blended team consultants and Metropolitan staff

Model Overview

- 1,150 miles pipes/canals
 55 Pressure Control/Hydro facilities
 10 Reservoirs
- 380 Service connections 18 Relief structures
- 920 Valves

E&O Committee

375 Blow-off strs.

Hydraulic Analysis – Using Spreadsheets

Spreadsheets/hand calculations
 Simple multiple pipe analysis
 Steady state conditions

E&O Committee

Hydraulic Analysis – Using the Hydraulic Model

Current Capabilities
 Network analysis
 Dynamic conditions
 Multiple scenarios
 Water quality analysis

Model Utilization

Water Resources

- Evaluate long-term change in supply or demand conditions
- Evaluate emergency storage requirements
- Determine delivery extents from treatment plants
- Engineering
 - Sizing of new pipes, pump stations, hydro and control facilities
 - Determine post-rehabilitation pipe size
- Operations
 - Troubleshoot system operation
 - Evaluate deliveries during unique operating conditions
 - Conduct 'real-time' water quality analysis
 - Evaluate pipeline dewatering strategy

Question:

- What is the extent of water deliveries from a treatment plant into the distribution system?
 - Under normal conditions
 - Under high SWP allocation
 - Under low SWP allocation

E&O Committee

Engineering – Analyze Impact of PCCP Relining Question:

 What is the impact of PCCP relining on our ability to deliver flow to member agencies?

Engineering – Five Priority PCCP Feeders

E&O Committee

Engineering – Analyze Impact of PCCP Relining

- Analyzed numerous scenarios by varying
 - Supply conditions
 - Service connection demands
 - Operational strategies
- Results
 - Member Agency demands met after relining

Operations - Dewatering Estimates

Questions:

- 1. How long will dewatering take?
- 2. What is the volume released at each dewatering location?
- 3. What is the extent of the overland flows from the discharges?

Blow-off Location along Foothill Feeder

Operations - Dewatering Estimates and Flow Paths

tem 6c Slide 1!

Operations - Dewatering Estimates and Flow Paths

E&O Committee

Summary

Applications of the water distribution model

- Provides quick results
- Ability to holistically assess hydraulic impacts of a project
- Benefit to Member Agencies
- Future Capabilities
 - Transient analysis
 - Advanced water quality analysis
 - Real-time analysis
 - Integrate two-dimensional flood routing analysis

