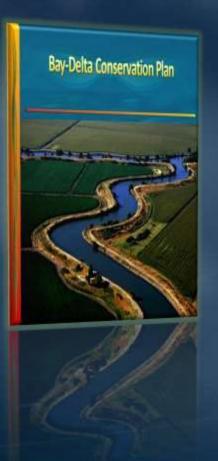
Update on Bay-Delta Conservation Plan and Delta Conveyance Special Committee on Bay-Delta Item 4b; April 26, 2011

- State administration
 - Formulated new BDCP governance approach to improve management & policy decision-making
 - Reviewed schedule to ensure milestones are being met
- Finalizing biological effects analysis

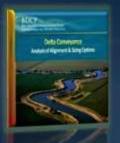


Upcoming Tasks

Develop operations criteria

- Develop assurances including adaptive management range
- Negotiate cost-share & funding mechanisms
- Analysis of EIR/EIS

Bay-Delta Conservation Plan Overview



Multi-species approach to endangered species protection

Includes habitat conservation, conveyance improvements, and other stressors control

Regulatory assurances

- Long-term operations permit
- Coverage for existing & future listed species
- Future regulatory obligation defined upfront

Bay-Delta Conservation Plan Conveyance Improvement Questions

What will the project look like?

What are the benefits & risks?

What will it cost?

-

Sac River

Preliminary Subject to Revision

Stockton

SIRIN

Sacramento

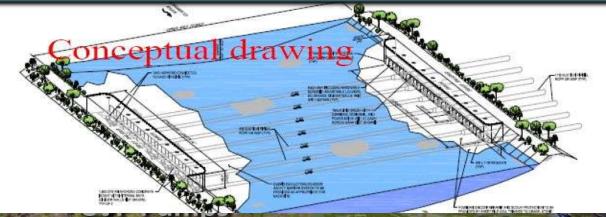
Bay-Delta Conservation Plan Dual-Conveyance – <u>Central Tunnel</u>

- River Intakes (Five 3,000 cfs w-screens)
- Regulating Forebay (5,250 acre-ft capacity)
- Intermediate Pumping Plant
- Two Tunnels 35 mi. (37 ft outside diameter)
 - Byron Tract Forebay (4,300 acre-ft capacity)

SWP Pumps O CVP Pumps

Sac River

Sacramento


Preliminary Subject to Re

Stockton

Bay-Delta Conservation Plan Dual-Conveyance – Intake Options

A CONTRACTOR OF A CONTRACTOR OF

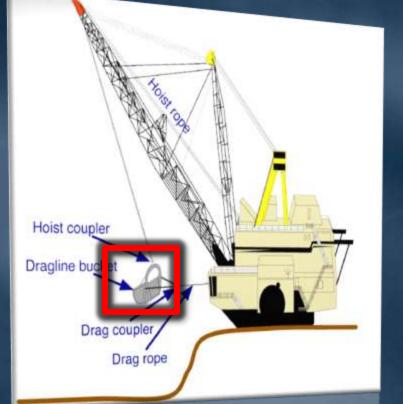
On-Bank Screen

Preliminary Subject to Revision

Bay-Delta Conservation Plan Open Canal Proposal

ZOOff

~24 ft. depth



Delta Cross Channel (500' wide x 15' deep)

1,400 ft.

California Aqueduct (200' wide x 30' deep) Levees Up to 35 ft high

Bay-Delta Conservation Plan Open Canal Proposal

Drag rop

Canal Dredging Walking Dragline

Alexan

Tunnel Boring Machine

• Inland Feeder Tunnel

- 12 ft diameter (19' O.D.) = 1,000 cfs
- Delta Tunnel
 - 2 @ 33 ft. dia. (37' O.D.) = 15,000 cfs

Preliminary Subject to Revision

Diameter:

plus 2-foot thick walls

33 feet.

Large Diameter Tunnels

- 51 ft. Shanghai, China
 Yangtze River highway tunnel; 2 bores
- 30 ft. Chicago, USA
 109 mile sewer overflow tunnel
 30 tunnel boring machines
- 24 to 45 ft. Cleveland, USA Sewer overflow tunnels
- 33 ft. Nagarjuna Sagar NP, India
 27 mile water supply tunnels
- 41 ft. Jinping, China
 40 mile hydroelectric tunnels
- 44 ft. Kuala Lumpur, Malaysia Dual-deck transportation/stormwater

Conveyance Improvements Footprint

Land Acquisition	West Canal	Central Tunnel	East Canal
Footprint	18,643 ac.	6,525 ac.	18,065 ac.
Subsurface Easement	920 ac.	1,945 ac.	506 ac.
Land (Residential & Commercial	194 ac.	26 ac.	224 ac.
Utilities	300 conflicts	70 conflicts	150 conflicts
Transp. (Crossings)	20 Roads	0	18 Roads
Navigation (Siphons)	12 water courses	0	8 water courses

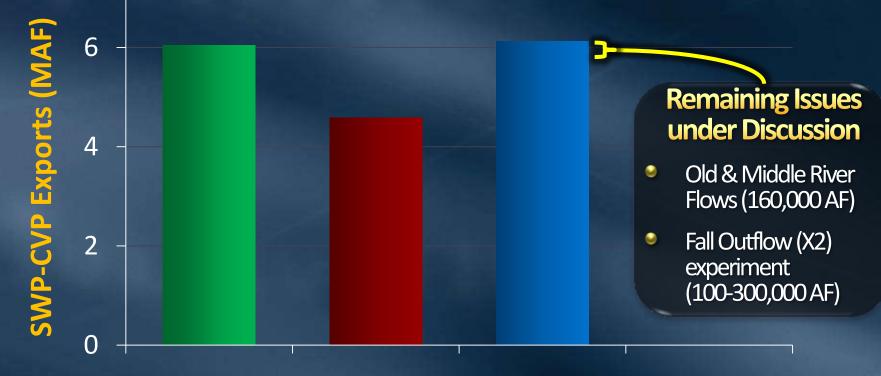
Temporary right-of-way for construction is included

Benefits

What can be delivered without new conveyance?

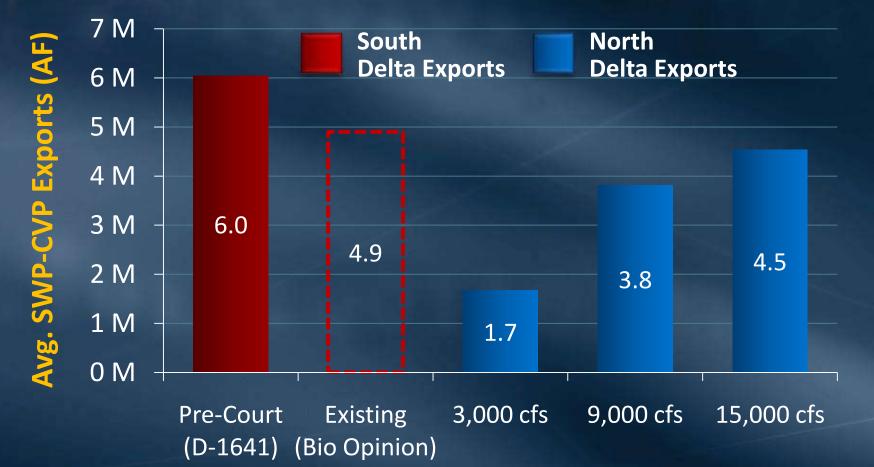
What can be delivered with new conveyance?

What size should the project be?

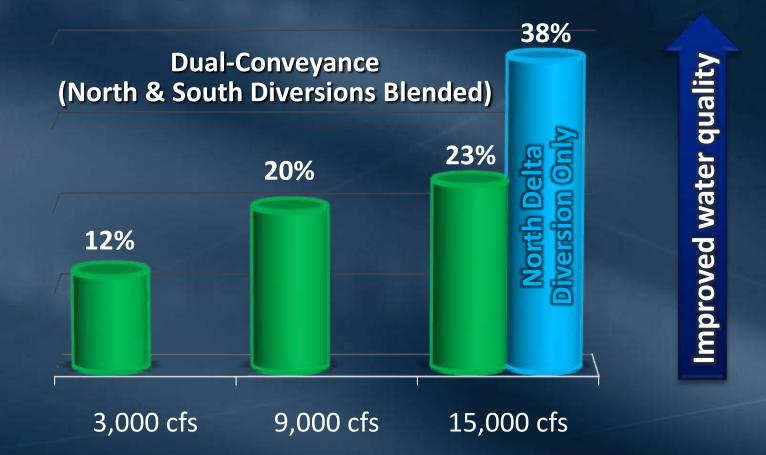

Regulatory Water Costs * 2008-2010 Biological Opinion Impacts

2008 impact = 670,000 acre-ft (~\$201 million)
 2009 impact = 619,000 acre-ft (~\$186 million)
 2010 impact = 1,043,000 acre-ft (~\$313 million)
 Smelt Bio Op = 20-33% cut annually
 Salmon Bio Op = additional 10% cut

Delta Conveyance Water Supply (SWP & CVP)



Pre-CourtExistingBDCP Proposed(D-1641)(Bio Opinion)(15,000 cfs)



What Happens If There Are No South Delta Diversions?

(Due to sea-level rise, seismic/flood, ESA restrictions)

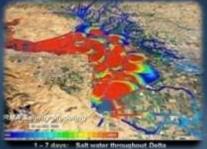
Preliminary Subject to Revision

Reduced salinity allows for

- Easier to meet MWD blending goals
- Improved quality for groundwater replenishment
- Lower salinity by 100mg/L = ~ \$95M/yr regional savings

New Delta Conveyance Other Benefits

Water Quality


- Reduced organic carbon, bromides
- Reduced water treatment costs

Improved Reliability

- Avoids seismic risks of levee failure
- Avoids potential future regulatory restrictions
- Enhances ability to handle future climate change challenges

Conveyance Sizing: Is Smaller Simpler?

How do the tunnels differ?

Conveyance Sizing – Is Smaller Simpler? Options Under Review

- 3,000 cfs Two 18-ft tunnels
- 6,000 cfs Two 23-ft tunnels
- 9,000 cfs Two 26-ft tunnels
- 12,000 cfs Two 29-ft tunnels
- 15,000 cfs Two 33-ft tunnels

Smaller is NOT Simpler

Tunnel boring machine size necessary for 3,000 cfs Delta tunnels

Does Smaller Conveyance Solve Environmental Problems?

"The operation of an isolated conveyance will provide opportunities to <u>manage the flow of water</u> which will enable the operators <u>to better emulate the natural flows</u>, which were evident before all of man's changes to the system..."

John McCamman, Director California Fish and Game

Steelhead

Chinook Salmon

Green Sturgeon

Goal – In-Delta Rivers Flowing Forward Old & Middle River Flows*

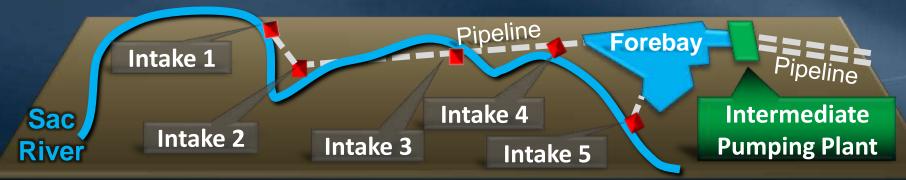
4,000 (CFS) 3,000 ver Flows 2,000 1,000 0 **Old Middle** 6,000 cfs 9,000 cfs 12,000 cfs 15,000 cfs 0 cfs 3,000 cfs -1,000 -2,000 -3,000 Larger tunnels eliminate reverse flows

Average Old & Middle River flows January thru June

Better Fish Flow Conditions

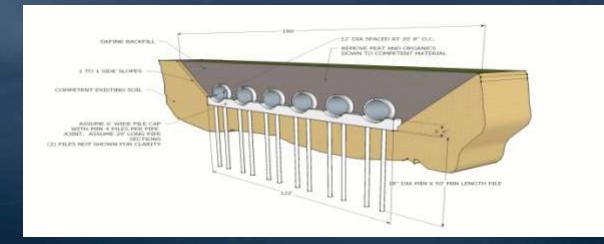
Delta Conveyance Options Risk Analysis

Delta Conveyance Risk Assessment Results


Top Cost Risks

- Differing geotech conditions
- Potential habitat mitigation (terrestrial)
- Available tunnel contractor pool
- Inability to adjust construction activities to avoid delay

Engineering Optimization Tunnel Flow – Gravity vs. Pumped


- Pumped Flow
 - Tunnel diameter = 37 ft
 - Higher internal pressures & stress
 - Higher annual costs (energy, maintenance, replacement)
- Gravity Flow
 - Tunnel diameter = 45 ft
 - Lower internal pressures & stress
 - Lower annual costs

Engineering Options Analyzed 3,000 cfs "Cut & Cover" Construction vs. Tunnel

Capacity	Capital Cost	Total Annual Costs (over 50-yr)	Pipe Sizes	Foundation Requirements
Tunnel	\$ 7.4 B	\$ 0.95 billion	2 @ 18 ft	None
Cut & Cover	\$ 9.7 B	\$ 0.95 billion	6 @ 12 ft	Piles and Concrete Caps

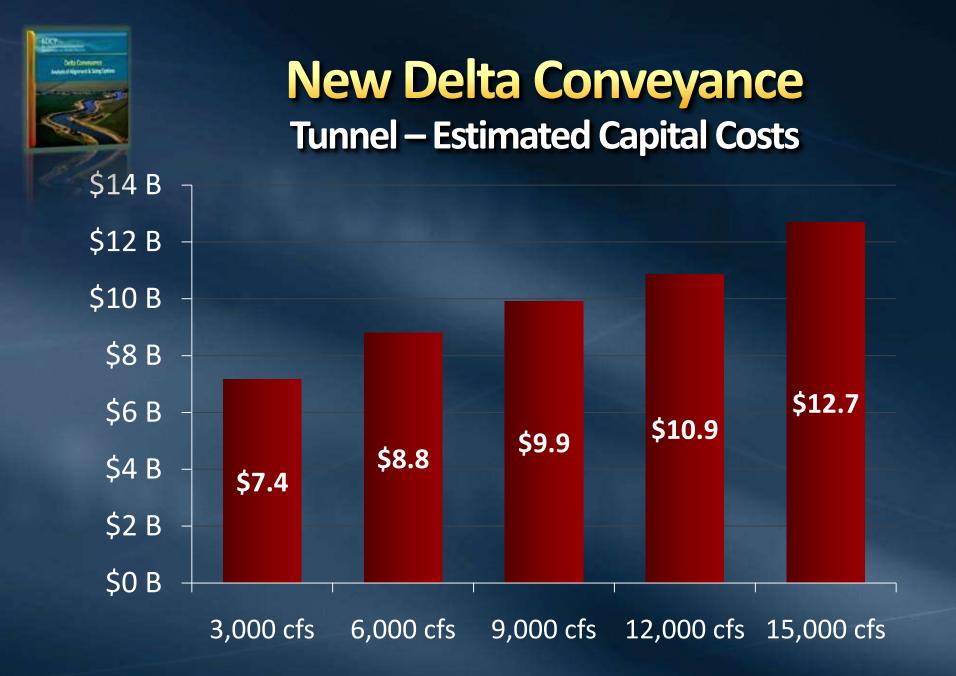
Engineering Optimization Other Analyses

- Contracting methods & contractor availability
- Alignment optimization
- Tunnel lining reinforcements
- Schedule & sequencing of tunnel construction
- Tunnel profile depth, slope changes

Delta Conveyance Options Cost Analysis

Delta Conveyance Cost Analysis

East Canal ~ \$8 billion *


West Canal ~ \$9 billion *

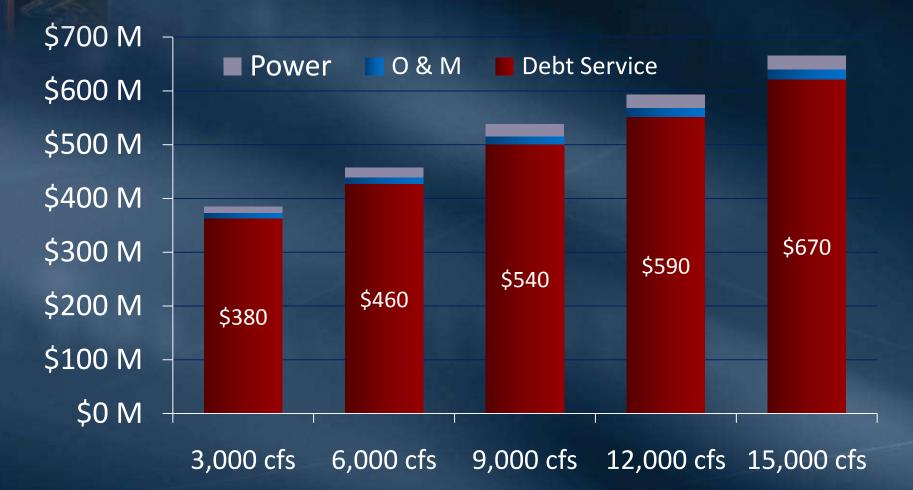
Tunnel ~ \$12.7 billion *

* URS developed initial cost estimates; Second independent expert cost analysis from 5RMK Inc completed in Jan. 2010.

* Includes 35% construction contingency on tunnel (25% on non-tunnel) and 18% for engineering/project management.

Costs based on Dec 2010 DHCCP estimate (in billions)

Preliminary Subject to Revision 33


What Tunnel Per Unit of Capacity Is the Most Expensive to Build? \$ million per cfs capacity

Costs based on Dec 2010 DHCCP estimate (in millions)

New Delta Conveyance Total Annual Costs

Costs based on Dec 2010 DHCCP estimate (in millions)


Delta Conveyance Capital Cost per Acre-Feet

	Repayment Based On	
Alignment	Incremental New Supplies	Average SWP Deliveries
East (~ \$8 B)	~ \$326/AF	~ \$68/AF
West (~ \$9 B)	~ \$367/AF	~ \$77/AF
Tunnel (~ \$12.7 B)	~ \$518/AF	~ \$109/AF

Long-Term Implementation Estimated Costs

	Obligations		
Conveyance	Total Program	Metropolitan Share	
Capital	~\$8 - \$13 billion	~\$1.8 - \$3.0 billion	
O&M (annual)	~\$14 - \$18 million/yr	~\$3 - \$4 million/yr	
Energy (annual)	~\$16 - \$55 million/yr	~\$4 - \$12 million/yr	

Bay-Delta Conservation Plan Preliminary Cost Analysis

Improvements	Costs *	Funding Source
Conveyance	\$12.7 billion	Water Exporters
Eco-Restoration & Other Stressors	\$3.6 billion	Fed/State/Water Exporters/Other

Upcoming Tasks

- Analyze other alternatives in EIR/EIS
- Refine project description as needed
- Continue engineering optimization
- Continue financial plan development
 - SWC Finance Workgroup in coordination with CVP contractors

The Delta

Sacramento

State & Federal Pumping Plants

Califiornia Bay-Delia

Stockton